
Week 7 Lecture Notes

Optimization Objective
The Support Vector Machine (SVM) is yet another type of supervised machine learning algorithm. It is sometimes cleaner and more powerful.

Recall that in logistic regression, we use the following rules:

if y=1, then and

if y=0, then and

Recall the cost function for (unregularized) logistic regression:

To make a support vector machine, we will modify the �rst term of the cost function so that when (from

now on, we shall refer to this as z) is greater than 1, it outputs 0. Furthermore, for values of z less than 1, we shall use a straight decreasing line

instead of the sigmoid curve.(In the literature, this is called a hinge loss (https://en.wikipedia.org/wiki/Hinge_loss) function.)

Similarly, we modify the second term of the cost function so that when z is less than -1, it outputs 0.

We also modify it so that for values of z greater than -1, we use a straight increasing line instead of the sigmoid curve.

We shall denote these as and (respectively, note that is the cost for classifying when y=1, and is the cost for

classifying when y=0), and we may de�ne them as follows (where k is an arbitrary constant de�ning the magnitude of the slope of the line):

(x) ≈ 1hθ x ≫ 0ΘT

(x) ≈ 0hθ x ≪ 0ΘT

J(θ) = − log(()) − (1 −) log(1 − ())
1
m
∑
i=1

m

y(i) hθ x(i) y(i) hθ x(i)

= − log()− (1 −) log(1 −)1
m
∑
i=1

m

y(i) 1

1 + e−θT x(i)
y(i) 1

1 + e−θT x(i)

−log((x)) = −log()hθ

1

1 + e− xθT
xθT

−log(1 −) = −log(1 −)hθ(x)
1

1 + e− xθT

(z)cost1 (z)cost0 (z)cost1 (z)cost0

z = xθT

https://en.wikipedia.org/wiki/Hinge_loss)

Recall the full cost function from (regularized) logistic regression:

Note that the negative sign has been distributed into the sum in the above equation.

We may transform this into the cost function for support vector machines by substituting and :

We can optimize this a bit by multiplying this by m (thus removing the m factor in the denominators). Note that this does not a�ect our

optimization, since we're simply multiplying our cost function by a positive constant (for example, minimizing gives us 5; multiplying it

by 10 to make it still gives us 5 when minimized).

Furthermore, convention dictates that we regularize using a factor C, instead of λ, like so:

This is equivalent to multiplying the equation by , and thus results in the same values when optimized. Now, when we wish to regularize

more (that is, reduce over�tting), we decrease C, and when we wish to regularize less (that is, reduce under�tting), we increase C.

Finally, note that the hypothesis of the Support Vector Machine is not interpreted as the probability of y being 1 or 0 (as it is for the hypothesis of

logistic regression). Instead, it outputs either 1 or 0. (In technical terms, it is a discriminant function.)

Large Margin Intuition
A useful way to think about Support Vector Machines is to think of them as Large Margin Classi�ers.

If y=1, we want (not just ≥0)

If y=0, we want (not just <0)

Now when we set our constant C to a very large value (e.g. 100,000), our optimizing function will constrain Θ such that the equation A (the

summation of the cost of each example) equals 0. We impose the following constraints on Θ:

 if y=1 and if y=0.

If C is very large, we must choose Θ parameters such that:

This reduces our cost function to:

Recall the decision boundary from logistic regression (the line separating the positive and negative examples). In SVMs, the decision boundary has

the special property that it is as far away as possible from both the positive and the negative examples.

(z) = max(0,k(1 + z))cost0

(z) = max(0,k(1 − z))cost1

J(θ) = (− log(())) + (1 −)(− log(1 − ())) +1
m
∑m

i=1 y(i) hθ x(i) y(i) hθ x(i) λ

2m
∑n

j=1 Θ2
j

(z)cost0 (z)cost1

J(θ) = () + (1 −) () +1
m
∑m

i=1 y(i) cost1 θT x(i) y(i) cost0 θT x(i) λ

2m
∑n

j=1 Θ2
j

(u − 5 + 1)2

10(u − 5 + 10)2

J(θ) = () + (1 −) () +∑m
i=1 y(i) cost1 θT x(i) y(i) cost0 θT x(i) λ

2
∑n

j=1 Θ2
j

J(θ) = C () + (1 −) () +∑m
i=1 y(i) cost1 θT x(i) y(i) cost0 θT x(i) 1

2
∑n

j=1 Θ2
j

C =
1
λ

(x) = {hθ
1
0

if x ≥ 0ΘT

otherwise

x ≥ 1ΘT

x ≤ −1ΘT

x ≥ 1ΘT x ≤ −1ΘT

(x) + (1 −) (x) = 0∑m
i=1 y(i)cost1 ΘT y(i) cost0 ΘT

J(θ) = C ⋅ 0 +
1
2
∑
j=1

n

Θ2
j

=
1
2
∑
j=1

n

Θ2
j

The distance of the decision boundary to the nearest example is called the margin. Since SVMs maximize this margin, it is often called a Large
Margin Classi�er.

The SVM will separate the negative and positive examples by a large margin.

This large margin is only achieved when C is very large.

Data is linearly separable when a straight line can separate the positive and negative examples.

If we have outlier examples that we don't want to a�ect the decision boundary, then we can reduce C.

Increasing and decreasing C is similar to respectively decreasing and increasing λ, and can simplify our decision boundary.

Mathematics Behind Large Margin Classi�cation (Optional)

Vector Inner Product

Say we have two vectors, u and v:

The length of vector v is denoted , and it describes the line on a graph from origin (0,0) to .

The length of vector v can be calculated with by the Pythagorean theorem.

The projection of vector v onto vector u is found by taking a right angle from u to the end of v, creating a right triangle.

p= length of projection of v onto the vector u.

Note that where θ is the angle between u and v. Also, . If you substitute p for , you get

.

So the product is equal to the length of the projection times the length of vector u.

In our example, since u and v are vectors of the same length, .

If the angle between the lines for v and u is greater than 90 degrees, then the projection p will be negative.

We can use the same rules to rewrite :

So we now have a new optimization objective by substituting in for :

If y=1, we want

If y=0, we want

The reason this causes a "large margin" is because: the vector for Θ is perpendicular to the decision boundary. In order for our optimization

objective (above) to hold true, we need the absolute value of our projections to be as large as possible.

If , then all our decision boundaries will intersect (0,0). If , the support vector machine will still �nd a large margin for the decision

boundary.

Kernels I

u = []u1

u2
v = []v1

v2

||v|| (,)v1 v2

+v2
1 v2

2

− −−−−−
√

v = p ⋅ ||u||uT

v = ||u|| ⋅ ||v|| cosθuT p = ||v|| cosθ ||v|| cosθ

v = p ⋅ ||u||uT

vuT

v = uuT vT

v = u = p ⋅ ||u|| = +uT vT u1v1 u2v2

min
Θ

1
2
∑
j=1

n

Θ2
j

= (+ + ⋯ +)
1
2

Θ2
1 Θ2

2 Θ2
n

= (
1
2

+ + ⋯ +Θ2
1 Θ2

2 Θ2
n

− −−−−−−−−−−−−−−√)2

= ||Θ|
1
2

|2

ΘT x(i)

= ⋅ ||Θ|| = + + ⋯ +ΘT x(i) p(i) Θ1x
(i)
1 Θ2x

(i)
2 Θnx

(i)
n

⋅ ||Θ||p(i) ΘT x(i)

⋅ ||Θ|| ≥ 1p(i)

⋅ ||Θ|| ≤ −1p(i)

p(i)

= 0Θ0 ≠ 0Θ0

Kernels I
Kernels allow us to make complex, non-linear classi�ers using Support Vector Machines.

Given x, compute new feature depending on proximity to landmarks .

To do this, we �nd the "similarity" of x and some landmark :

This "similarity" function is called a Gaussian Kernel. It is a speci�c example of a kernel.

The similarity function can also be written as follows:

There are a couple properties of the similarity function:

If , then

If x is far from , then

In other words, if x and the landmark are close, then the similarity will be close to 1, and if x and the landmark are far away from each other, the

similarity will be close to 0.

Each landmark gives us the features in our hypothesis:

 is a parameter of the Gaussian Kernel, and it can be modi�ed to increase or decrease the drop-o� of our feature . Combined with looking at

the values inside Θ, we can choose these landmarks to get the general shape of the decision boundary.

Kernels II
One way to get the landmarks is to put them in the exact same locations as all the training examples. This gives us m landmarks, with one

landmark per training example.

Given example x:

, , , and so on.

This gives us a "feature vector," of all our features for example . We may also set to correspond with . Thus given training

example :

Now to get the parameters Θ we can use the SVM minimization algorithm but with substituted in for :

Using kernels to generate f(i) is not exclusive to SVMs and may also be applied to logistic regression. However, because of computational

optimizations on SVMs, kernels combined with SVMs is much faster than with other algorithms, so kernels are almost always found combined only

with SVMs.

, , l(1) l(2) l(3)

l(i)

= similarity(x,) = exp(−)fi l(i) ||x − |l(i) |2

2σ2

= similarity(x,) = exp(−)fi l(i)
(−∑n

j=1 xj l
(i)
j)2

2σ2

x ≈ l(i) = exp(−) ≈ 1fi

≈ 02

2σ2

l(i) = exp(−) ≈ 0fi

(large number)2

2σ2

→l(1) f1

→l(2) f2

→l(3) f3
…

(x) = + + + …hΘ Θ1f1 Θ2f2 Θ3f3

σ2 fi

= similarity(x,)f1 l(1) = similarity(x,)f2 l(2) = similarity(x,)f3 l(3)

f(i) x(i) = 1f0 Θ0

x(i)

→x(i)

⎡

⎣

⎢⎢⎢⎢⎢⎢

= similarity(,)f
(i)
1 x(i) l(1)

= similarity(,)f
(i)
2 x(i) l(2)

⋮
= similarity(,)f (i)

m x(i) l(m)

⎤

⎦

⎥⎥⎥⎥⎥⎥

f (i) x(i)

C () + (1 −) () +minΘ ∑m
i=1 y(i)cost1 ΘT f (i) y(i) cost0 θT f (i) 1

2
∑n

j=1 Θ2
j

Choosing SVM Parameters

Choosing C (recall that

If C is large, then we get higher variance/lower bias

If C is small, then we get lower variance/higher bias

The other parameter we must choose is from the Gaussian Kernel function:

With a large , the features � vary more smoothly, causing higher bias and lower variance.

With a small , the features � vary less smoothly, causing lower bias and higher variance.

Using An SVM

There are lots of good SVM libraries already written. A. Ng often uses 'liblinear' and 'libsvm'. In practical application, you should use one of these

libraries rather than rewrite the functions.

In practical application, the choices you do need to make are:

Choice of parameter C

Choice of kernel (similarity function)

No kernel ("linear" kernel) -- gives standard linear classi�er

Choose when n is large and when m is small

Gaussian Kernel (above) -- need to choose

Choose when n is small and m is large

The library may ask you to provide the kernel function.

Note: do perform feature scaling before using the Gaussian Kernel.

Note: not all similarity functions are valid kernels. They must satisfy "Mercer's Theorem" which guarantees that the SVM package's optimizations

run correctly and do not diverge.

You want to train C and the parameters for the kernel function using the training and cross-validation datasets.

Multi-class Classi�cation

Many SVM libraries have multi-class classi�cation built-in.

You can use the one-vs-all method just like we did for logistic regression, where with . We pick class i with

the largest .

Logistic Regression vs. SVMs

If n is large (relative to m), then use logistic regression, or SVM without a kernel (the "linear kernel")

If n is small and m is intermediate, then use SVM with a Gaussian Kernel

If n is small and m is large, then manually create/add more features, then use logistic regression or SVM without a kernel.

In the �rst case, we don't have enough examples to need a complicated polynomial hypothesis. In the second example, we have enough examples

that we may need a complex non-linear hypothesis. In the last case, we want to increase our features so that logistic regression becomes

applicable.

Note: a neural network is likely to work well for any of these situations, but may be slower to train.

Additional references
"An Idiot's Guide to Support Vector Machines": http://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf

C =
1
λ

σ2

σ2

σ2

σ2

y ∈ 1,2,3,…,K , ,…,Θ(K)Θ(1) Θ(2)

(xΘ(i))T

http://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf

