
Week 10 Lecture Notes

Learning with Large Datasets
We mainly bene�t from a very large dataset when our algorithm has high variance when m is small.

Recall that if our algorithm has high bias, more data will not have any bene�t.

Datasets can often approach such sizes as m = 100,000,000. In this case, our gradient descent step will

have to make a summation over all one hundred million examples. We will want to try to avoid this --

the approaches for doing so are described below.

Stochastic Gradient Descent
Stochastic gradient descent is an alternative to classic (or batch) gradient descent and is more e�cient

and scalable to large data sets.

Stochastic gradient descent is written out in a di�erent but similar way:

The only di�erence in the above cost function is the elimination of the m constant within .

 is now just the average of the cost applied to all of our training examples.

The algorithm is as follows

1. Randomly 'shu�e' the dataset

2. For

This algorithm will only try to �t one training example at a time. This way we can make progress in

gradient descent without having to scan all m training examples �rst. Stochastic gradient descent will be

unlikely to converge at the global minimum and will instead wander around it randomly, but usually

yields a result that is close enough. Stochastic gradient descent will usually take 1-10 passes through

your data set to get near the global minimum.

Mini-Batch Gradient Descent

cost(θ, (,)) = (() −x(i) y(i) 1

2
hθ x(i) y(i))2

1

2

(θ) = cost(θ, (,))Jtrain

1

m
∑
i=1

m

x(i) y(i)

Jtrain

i = 1…m

:= − α(() −) ⋅Θj Θj hΘ x(i) y(i) x
(i)
j

Mini-Batch Gradient Descent

Mini-batch gradient descent can sometimes be even faster than stochastic gradient descent. Instead of

using all m examples as in batch gradient descent, and instead of using only 1 example as in stochastic

gradient descent, we will use some in-between number of examples b.

Typical values for b range from 2-100 or so.

For example, with b=10 and m=1000:

Repeat:

For

We're simply summing over ten examples at a time. The advantage of computing more than one

example at a time is that we can use vectorized implementations over the b examples.

Stochastic Gradient Descent Convergence
How do we choose the learning rate α for stochastic gradient descent? Also, how do we debug

stochastic gradient descent to make sure it is getting as close as possible to the global optimum?

One strategy is to plot the average cost of the hypothesis applied to every 1000 or so training examples.

We can compute and save these costs during the gradient descent iterations.

With a smaller learning rate, it is possible that you may get a slightly better solution with stochastic

gradient descent. That is because stochastic gradient descent will oscillate and jump around the global

minimum, and it will make smaller random jumps with a smaller learning rate.

If you increase the number of examples you average over to plot the performance of your algorithm,

the plot's line will become smoother.

With a very small number of examples for the average, the line will be too noisy and it will be di�cult to

�nd the trend.

One strategy for trying to actually converge at the global minimum is to slowly decrease α over time.

For example

However, this is not often done because people don't want to have to �ddle with even more

parameters.

Online Learning

i = 1,11,21,31,…,991

:= − α (() −)θj θj

1

10
∑
k=i

i+9

hθ x(k) y(k) x
(k)
j

α =
const1

iterationNumber + const2

With a continuous stream of users to a website, we can run an endless loop that gets (x,y), where we

collect some user actions for the features in x to predict some behavior y.

You can update θ for each individual (x,y) pair as you collect them. This way, you can adapt to new pools

of users, since you are continuously updating theta.

Map Reduce and Data Parallelism
We can divide up batch gradient descent and dispatch the cost function for a subset of the data to

many di�erent machines so that we can train our algorithm in parallel.

You can split your training set into z subsets corresponding to the number of machines you have. On

each of those machines calculate , where we've split the data starting at p

and ending at q.

MapReduce will take all these dispatched (or 'mapped') jobs and 'reduce' them by calculating:

For all .

This is simply taking the computed cost from all the machines, calculating their average, multiplying by

the learning rate, and updating theta.

Your learning algorithm is MapReduceable if it can be expressed as computing sums of functions over
the training set. Linear regression and logistic regression are easily parallelizable.

For neural networks, you can compute forward propagation and back propagation on subsets of your

data on many machines. Those machines can report their derivatives back to a 'master' server that will

combine them.

(() −) ⋅∑
i=p

q

hθ x(i) y(i) x
(i)
j

:= − α (tem + tem + ⋯ + tem)Θj Θj

1

z
p

(1)
j p

(2)
j p

(z)
j

j = 0,…,n

